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ABSTRACT

The structures of periodic orbit families in the circular restricted three-body problem are fractal-like.
Successive magnifications of selected regions of the C—x,, plane reveal that the families of periodic orbits
are exceedingly complex and in some ways self-similar. Thus, satellite capture can be thought of as a
competition between two primary masses for possession of the third particle, the boundary regions of
the struggle being fractal. In addition, it is shown that an important mechanism of satellite capture
involves the particle coming in (being captured) on a trajectory near the stable manifold of a hyperbolic
fixed point near the inner Lagrangian point. The stable and unstable manifolds intersect transversally,
resulting in chaotic motions and subsequent escape. Thus, gravitational capture is intimately associated

with chaotic motion.

I. INTRODUCTION

The restricted three-body problem (RTBP) has been
around a very long time (Euler 1772) and extensively stud-
ied by many (Szebehely 1967 and references therein). Orbit
trajectories are usually quite complicated, so a simplified
starting point for study has traditionally been periodic or-
bits. The importance of periodic orbits in understanding mo-
tions in the RTBP is emphasized by Poincaré’s conjecture
that, given a particular solution, one can find a periodic solu-
tion such that the difference between the two is negligible for
arbitrary lengths of time. Thus, periodic orbits are of funda-
mental importance.

Much effort has been made towards calculating families of
periodic orbits and determining their stability and their
structures on the initial conditions space (see, e.g., Hénon
1965a,b, 1969c; Szebehely 1967). A family of periodic orbits
can be represented by a curve (often called the characteristic
curve) on the initial position—initial velocity plane. The usu-
al approach is to substitute the Jacobi constant for initial
velocity. This is done for several families, and relationships
are explored, etc. In this paper a new viewpoint is offered
regarding periodic orbit families in the restricted three-body
problem.

As part of a project concerning satellite capture (Murison
1988, 1989b), the circular restricted three-body equations of
motion were numerically integrated in a search for long,
temporary capture orbits. The goal was to find the types of
orbits around the more massive primary that are likely to be
captured by the less massive primary for extended periods of
time—i.e., to study the capture process. Results are present-
ed elsewhere (Murison 1988, 1989b). Here we point out a
curious phenomenon noticed in the course of this project—
namely, that the structures corresponding to families of peri-
odic orbits—that is, the characteristic curves—are fractal-
like. We also partially investigate the phase space using the
surface of section technique, finding that the fractal-like
structures in the C-x, plane are related to the incredibly
complex hierarchy of hyperbolic and elliptic fixed points;
their associated ““islands” of stability; and the migration, bi-
furcation, and eventual breakup into chaos of these islands.
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In the next section, the method of calculation and the cal-
culations themselves are described. In Sec. III, the fractal-
like structures are presented. Section I'V contains the surface
of section analysis. The results are summarized in Sec. V.

II. DESCRIPTION OF CALCULATIONS

Even the plane circular RTBP has an initial parameter
space of four dimensions to explore. This is much too com-
plicated for initial numerical investigations. Thus, restrict
the initial position to lie on the line joining the two primaries.
Furthermore, let the initial velocity vector be at right angles
to this line. Then the initial conditions space is two-dimen-
sional: x,, the initial position, and v,, the initial velocity.
Following Huang and Innanen (1983) and Hénon (1969c),
we find it convenient to substitute the Jacobi constant C for
the initial velocity, via the relation

¥ =20 —-C, (1)

where

o=ty LB B
2 7, 7,
W= 25/ (2 + 2,), and r, and r, are the distances from
2, and sz, . The units are such that the distance between the
primaries is one, and the period of the primaries’ orbit is 27.
The motion is viewed from the usual rotating reference
frame, where 2, and ., are fixedonthexaxisatx, = —pu
andx, =1 —pu.

The initial conditions as stated above produce a symmet-
ric motion (Roy and Ovenden 1955). The symmetry is
about both the x axis and the time axis. Thus, we need to
calculate only half of the orbit. If the particle motion is be-
gun in the sphere of influence of the smaller mass »,, the
subsequent capture time—the amount of time spent in mo-
tion around »z,—is then twice the amount of time elapsed
before the particle escapes into motion around »»z,. One can
then plot the capture time, as a function of the initial condi-
tions x, and C, as a contour or gray-scale plot. In practice,
this means calculating individual orbits at the mesh points of
a grid in the C-x, plane. During an integration, when the
particle motion passes the inner Lagrangian point into mo-
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tion around »,, that orbit is terminated, the capture time
recorded, and the next orbit started.

The numerical method used here for calculating orbits is
that of Murison (1989a). Briefly, a Bulirsch-Stoer extrapo-
lation method (Press et al. 1986) was combined with both
two-body regularization (Stiefel and Scheifele 1970; Bettis
and Szebehely 1971) and a manifold correction algorithm
due to Nacozy (1971). This combination generally results in
rms errors in the Jacobi constant of less than roughly 105,
Thus, the orbits are extremely accurate.

Table I lists the ranges in x, and C covered by the calcula-

. tions that resulted in Fig. 1 [Plates 82-85]. For these calcu-
lations, the orbits were begun in initially prograde motion
around »»z,. Listed are the maximum calculation time limit
for each ogbit in units of the primary period (T ), and the
ranges in the initial conditions C and x, covered. For con-
venience, x from here on is referenceg from »2,, not the
center of mass. The actual capture time is, by symmetry,
double the values shown. For Fig. 1(a), the grid is 200 X 200
orbits, while for the others it is 150 X 150 orbits.

The mass ratio here is 4 = 0.01, chosen mainly for con-
venience in viewing details in the C-x, diagrams (Figs. 1).
Features in these diagrams evolve as the mass ratio varies
(Murison 1989b), but the fractal-like structures continue to
exist. The gross features in the u = 0.01 diagram are easily
seen to be the evolved features in diagrams of smaller or
larger 1. The 0.01 diagram has more separation between the
large island structure and the upper structures than dia-
grams of smaller u, and is therefore easier to use as an exam-
ple. As far as the aims of showing that fractal-like structures
exist and illustrating their association with the phase space
structure of the dynamical system are concerned, there is no
advantage in going to a more solar system-like mass ratio.
These results are meant as a specific illustration of a general
phenomenon of circular restricted three-body dynamics,
and the precise value of 4 is in this sense irrelevant.

Each individual orbit ran until one of the following oc-
curred:

(1) The particle escaped out of the bubble around /7,
defined by the zero—velocity surface. By symmetry, these are
capture orbits. Figure 2 shows an example of a typical short-
capture orbit (both halves of the symmetric half-orbit which
was actually calculated are shown).

(2) The integration time limit was reached. For these or-
bits, we do not know the eventual result, based on these cal-
culations. Later we will use surface of section techniques to
obtain clues to the outcomes of these orbits.

TABLE I. Initial conditions of Figs. 1(a)-1(h).

Fig. X, Cc ) Tmax
la 0.85 0.9995 3.15 3.16764 50
b 0.93 0.95 3.153 3.158 10
c 0.941 0.948 3.154 3. 1555 10
d 0.9415 0.9438 3.1540 3.1545 10
e 0.94243 0.94298 3.15405 3.15415 25
£ 0.94285 0.84340 3.15435 3.15448 20
g 0.94 0.96 3.1633 3.1665 20
h 0.9435 0.952 3.1652  3.1661 25
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The choice of ranges of initial conditions for Fig. 1(a)
were made as follows. The limits in x, were determined by
the positions of the inner Lagrangian point and of
my: x(Ly) <x, < 1.0. The upper limit for C was set by the
value at which the zero—velocity bubble around .2, closes off
access to »2; —that is, when the energy of the particle is not
large enough that it can pass between 2, and . The lower
limit to C is somewhat arbitrary, but was chosen such that
the zero—velocity surface begins to move away from ,,.
These lower-boundary orbits are in general short-lived, in
the sense that escape soon occurs from the vicinity of /.
For values of C less than this, the energy of the particle is
usually large enough that the capture lifetime is so short the
term loses meaning.

I C-x, STRUCTURE IN THE RESTRICTED THREE-BODY
PROBLEM

In this section, we will see evidence of self-similarity in the
C-x, diagrams. This kind of structure is telling us that the
periodic orbit families are fractal-like.

Mandelbrot first coined the term fractal (see Mandelbrot
1982). His definition was that the Hausdorff-Besicovitch
dimension of a fractal object exceeds the topological dimen-
sion, which is always an integer. Popular examples are Koch
curves and Cantor sets. One of the common characteristics
of a fractal is self-similarity. Thus, a less restrictive definition
is ““a fractal is a shape made of parts similar to the whole in
some way”’ (Mandelbrot 1986; also Feder 1988). It is this
latter definition that we will keep in mind here.

a) A Magnification Sequence of Portions of the C—x,, Plane

Figure 1(a) is a C-x,, diagram for u = 0.01. The capture
time is represented by the gray scale, ranging from the short-
est, assigned black, to the longest, assigned white. The next
figure, Fig. 1(b), is an enlargement of the lower boxed re-
gion of Fig. 1(a). Notice how the vague features of Fig. 1(a)
pop into sudden and complicated clarity, with indications of
even more unresolved structure. Figure 1(c) is a magnifica-
tion of the small box of Fig. 1(b). We see that indeed there is
much more structure.

It is here where we first notice self-similar features. As we
go from the lower right-hand corner to the upper left-hand
corner in Fig. 1(b), we encounter first a thick arm, followed
by a large blank space, followed by a smaller arm, then an-
other space, then another three arms separated by spaces. In
the magnification of a section of the largest arm [Fig. 1(c) 1,
we see a quite similar pattern. In the region just above the top
of the box, near (x,,C) = (0.943,3.1546), thereis an “arm,”
followed by a space, then another arm, then a space, then two
more arms before we lose further detail to lack of resolution.
The proportions of the two patterns appear to be similar. It
seems that there is a copy of the larger “arm” structure of
Fig. 1(b) embedded in the largest arm itself.

Figure 1(d) is an enlargement of the box of Fig. 1(c). The
arm structure is clarified a little more in the upper left. In the
region around the upper left corner of the lower box, near
(x0,C) = (0.9425,3.154 15), there is another copy of the
arm structure all over again. This probably continues with-
out end.

Notice now, in Fig. 1(d), the pitchfork pattern in the up-
per right-hand corner, enclosed by a box. This pattern is
repeated in the magnification of the lower box of Fig. 1(d),
asshown in Fig. 1(e) in the upper center. Near the bottom of
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FIG. 2. Example of a typical es-
cape/capture orbit. The dotted
line is the zero-velocity curve.
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Fig. 1(e) we see yet another copy of this same pattern,
though poorly resolved. Figure 1(f) is the magnification of
the upper box of Fig. 1(d).

Finally, Fig. 1(g) is a blow-up of the upper box of Fig.
1(a). Figure 1(h) is a magnification of the box of Fig. 1(g).
The lower middle arc structure of Fig. 1(h) is similar to the
middle arc structure of Fig. 1(g). The uppermost, thickest,
middle arc of Fig. 1(g) appears to have a miniature copy of
the whole structure embedded within itself. This also prob-
ably repeats ad infinitum.

These self-similar structures indicate that the periodic or-
bit structures in the C-x, plane are self-similar; that is, frac-
tal. In hindsight, this may not be too surprising. The capture
phenomenon can be viewed as a “competition” between /2,
and 2, for the possession of the particle .. In very-short-
capture regions of the C-x, plane, »», has the clear domi-
nance; in the infinitely long-capture regions, ., is the un-
contested winner. It is in the in-between regions that things
get very interesting, and fractal structure appears. These are
the “border” regions, the boundary between the influences
of , and »,. Fractal structures tend to occur at the boun-
daries of attracting regions (see, e.g., McDonald et al. 1985;
Peitgen and Richter 1986). Thus, satellite capture is a
boundary effect, and the boundary is fractal.

b) The Periodic Orbit Connection

As discussed elsewhere (Murison 1988, 1989b), the many
strands and loops apparent in Figs. 1 are associated with

.9% .98 1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14 1.16

periodic orbit (p.o.) families. As we pick initial conditions
closer and closer to a stable periodic orbit, the capture time
increases until, past a certain point, the capture time be-
comes infinite (approximately the white regions in Figs. 1).
If the p.o. is unstable, the capture time reaches some finite
peak. Thus, a strand on the C-x,, plane is tracing out a family
or families of periodic orbits. A periodic orbit family lies
under and is the cause of all of the loops and strands in the C~
x, diagrams. Since the structures appear to be fractal, we
conclude that the periodic orbit structure in the C-x, plane
is fractal.

The large “island” feature of Fig. 1(a) results from the
stable branch of a period 1 p.o. family. This family comes
into existence through a bifurcation at the top of the island,
in which stable and unstable families of periodic orbits sud-
denly and simultaneously appear. The unstable branch
drops down to the left, and the stable branch drops down to
the right. The orbit marked Sla in Figs. 1(a) and 1(b) (see
also Fig. 5) is a member of the unstable branch, while the
orbit marked S1b is a member of the stable branch.

The orbit sequences in Figs. 3-5 illustrate some of the p.o.
families corresponding to a few of the more obvious strands
in Fig. 1(a). The orbits in Figs. 3-5 are represented by the
labeled dots in Figs. 1(a) and 1(b). In Fig. 3 we have the
orbits labeled C; these are period 1,3,5, and 7 unstable orbits.
Very close to them on the C—x, plane are the F orbits of Fig.
4. These are also period 1,3,5, and 7, and are unstable. Since
these orbit families are unstable, even orbits precisely coin-
ciding with one of the periodic orbits will escape after a finite
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F1G. 5. Periodic orbits labeled Sla,
$10, 89, S8, 7, S6, S5, and S1b in Figs.
1(a) and 1(b).
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time. Figure 5 shows the S orbit sequence. Unlike the C and
F orbits, for which » is odd, the S orbits can have n odd or
even. But, again, except for S1b, the S orbits shown are un-
stable. Each of these families of unstable p.o. have their sta-
ble analogs tracing out a path in the white island region of
Fig. 1(a). Buried in the island, and also in the stability re-
gion at the top of that figure, is a complex network of bifurca-
tions of p.o. families. Some of these bifurcations have result-
ed in the family sequences illustrated here.

¢) An Example of a Period-Doubling Bifurcation

Period-doubling bifurcations, among other kinds, occur
in the restricted three-body problem. Figure 1(f) above
looks suspiciously like just such an example. Periodic orbits
were found at the locations of the labeled dots (G0-G3) in
that plot.

The orbit labeled GO is a period 11 orbit (that is, it loops
around , eleven times before closing). It is shown in Fig.
6(a) below. If the structure of Fig. 1(f) is a period-doubling
bifurcation, then we would expect orbits G1 and G2 to be
period 22. That is indeed the case. Orbit G1 is shown in Fig.
6(b). Close examination reveals a splitting of the trajectory.

LN B B e B e g

o
p GO ]
X
r (b) ]
- F ]
P G1 ]
X
FI1G. 6. (a) Period 11 orbit GO of Fig. 1(f). (b) Period 22
orbit G1.
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Finally, the orbit G3 is a member of the continuation of the
period 11 family of orbit GO. The initial conditions and per-
iods of motion are listed in Table II, along with those of the S,
F, and C periodic orbits.

The other pitchfork structures mentioned above are also
period-doubling bifurcations. The structure enclosed in the
bottom box of Fig. 1(d) [also in the upper center of Fig.
1(e)] is a family of period 15 orbits bifurcating into sets of
period 30 orbits. The squashed pitchfork at the bottom of
Fig. 1(e) results from a period 19 family bifurcating into
period 38.

IV. SURFACE OF SECTION ANALYSIS

One of the most useful tools available for investigating the
phase space structure of a dynamical system is the surface of
section (see, e.g., Jefferys 1974; Hénon 1983). The circular
plane RTBP is a system of two degrees of freedom, with one
integral (the Jacobi constant). Thus, the motion is confined
to a three-dimensional hypersurface embedded in the four-
dimensional phase space. A surface of section (sos) thenis a
two-dimensional cross section of the hypersurface. Here,
similar to Hénon (1969a,b), we choose the surface
{x,dx/d6 |y = 0, dy/d6 < 0}, where @ is the true anomaly of
the orbit of the primaries (for the circular RTBP, € is pro-
portional to time ¢). Thus, every time a trajectory crosses the
X axis in the rotating frame, and is moving in the negative y
direction, a point is plotted on the x,dx/d6 plane.

If a particular trajectory happens to be in a region of phase
space that is completely integrable, then it will lie on a two-
dimensional subspace that is topologically a 2-torus. If the
corresponding rotation number, v = », /,, defined as the
ratio of the frequencies of motion along the “long” and

TABLE II. Periodic orbit parameters.

orbit [ X, T

GO 3.15443 0.94319519 3.1686
G1 3.15441 0.94299626 6.3429
G2 3.15441 0.94329550 6.3429
G3 3.15440 0.94309241 3.1751
Sla 3.1555 0.9356555 0.2370
S10 3. 1555 0.93742234 2.5622
S9 3.1555 0.9388144 2.3518
S8 3. 1555 0.9403159 2.0907
S7 3.1555 0.9440606 1.8828
S6 3.1555 0.94835279 1.6298
S5 3.1555 0.95940005 1.4285
S1b 3.1555 0.87060297 0.2928
C1 3.1855 0.87836839 0.4614
C3 3.1555 0.911863870 0.9358
Ccs 3. 1555 0.92635480 1.3928
Cc7 3.1555 0.93206996 1.8616
F1 3.1555 0.87500233 . 4396
F3 3.1555 0.91036892 .9125
F5 3.1555 0.92573096 . 3669
F7 3.1555 0.93182711 . 8351



http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1989AJ.....98.2346M&db_key=AST

FT980AT.~ T - .J98- 2346M

2352 MARC A. MURISON: SATELLITE CAPTURE

“short” directions of the torus, is irrational, then the inter-
sections with the surface of section will trace out and fill a
closed curve. The motion is quasiperiodic. If v is rational, the
motion is periodic, and the surface of section consists of a
finite number of individual points. Suppose v = m/n, where
m and n are integers. Then there are k = m X n points, and
the corresponding orbit is period k.

A classic structure on the sos for a fully integrable Hamil-
tonian system is the saddle loop sketched in Fig. 7(a). Point
P is a hyperbolic point, corresponding to an unstable period
1p.o. Qis anelliptic point, corresponding to a stable period 1
p.o. The unstable invariant manifold of P, W*, wraps around
Q and joins smoothly the stable invariant manifold, W*. If
this structure is perturbed, rendering the system nonintegra-
ble, then W* and W" can cross transversally, as illustrated in
Fig. 7(b) (point R). This leads to the well-known homo-
clinic tangle, which implies a sensitive dependence on initial
conditions, leading to chaotic dynamics (see, e.g., Gucken-
heimer and Holmes 1983; Hénon 1983; Helleman 1984;
Wiggins 1988; Ruelle 1989). Poincaré (1892, 1893, 1899)
first discovered the homoclinic tangle while studying the
RTBP. ,

Figure 8(a) shows a surface of section for C = 3.160 36.
Several orbits were sampled along the horizontal line labeled

(a

(b) s

F1G. 7. (a) Unperturbed saddle loop structure on a surface of section. The
stable and unstable invariant manifolds, W* and W", join smoothly at
point R. (b) A perturbed saddle loop. W* and W* cross transversally at R,
giving rise to oscillations of the manifolds and a subsequent homoclinic
tangle.

2352

AinFig. 1(a). At this value of the Jacobi constant, the phase
space structure is dominated by a saddle loop, with the un-
stable and stable fixed points near x = 0.939 and 0.959, re-
spectively. At the resolution of the figure, the quasiperiodic
trajectories encircling the elliptic fixed point appear to exist
almost all the way to the hyperbolic fixed point. This indi-
cates that in this region of phase space the system is nearly
completely integrable.

What happens if we decrease C? This corresponds to a
higher “energy” of the massless particle, and a stronger per-
turbation by »2,. Figure 8(b) is an sos constructed from
orbits sampled along the horizontal line labeled B in Fig.
1(a), at which the value of C is 3.157 24. We see that the
elliptic point has given birth to a period 6 cycle, which mani-
fests itself as the six elliptic islands. In fact, between
C=3.160 36 and 3.157 24 several different n cycles and
their associated islands have “flowed” out of the elliptic
point and pushed their way outwards through the quasiper-
iodic region. Surrounding the quasiperiodic region of Fig.
8(b) are the islands associated with a period 7 family of
orbits, which has been caught in the process of breaking up
into the surrounding chaotic region. One can still see evi-
dence of several other islands immersed in the chaotic re-
gion, but they are under siege by the perturbations, are very
small, and with further decrease of C (increase of energy)
will soon disappear.

One of the most interesting features of the satellite island
structures is that they are self-similar. That is, consider any
island structure. It will look similar to the overall structure,
containing its own satellite island structure. Within the is-
land structure, choose another island. It will also be a minia-
ture copy of the larger structures, etc. The structure is infi-
nitely complex and in a sense very well ordered. But within
all this structure and order we also have regions of chaos
associated with the hyperbolic points interspersed between
the island elliptic points.

When C = 3.1555, the phase space has evolved to the
structure shown in Fig. 8(c). This corresponds to orbits
sampled along the line labeled Cin Fig. 1(a). We see that the
quasiperiodic region surrounding the elliptic point is shrink-
ing, giving way to the encroaching chaotic region surround-
ing it. At this stage, a period 5 family is in the process of
breaking up, and again we see evidence of other almost-de-
stroyed islands in the chaotic region (the most prominent
belong to a period 12 family, with a rotation number
v =2/12). The period 5 family causing the obvious islands
is the stable counterpart of the unstable orbits represented by
orbit S5 above (Fig. 5). The unstable period 5 family results
from the five hyperbolic points in between the period 5 is-
lands of Fig. 8(c).

Perhaps the most interesting feature of this figure is the
trace of the first few oscillations of the stable and unstable
manifolds (refer to Fig. 7). It is conjectured that orbits very
close to W* or W* will behave similarly to the manifold they
are near. Figure 8(c) lends support to this. The chaotic re-
gion results from the incredibly complex folding and refold-
ing of W* and W°. In fact, the topology of W* and W* is a
Cantor set (Guckenheimer and Holmes 1983; Wiggins
1988), and therefore fractal.

Figure 8(d) shows the phase space at C = 3.154 42, corre-
sponding to line D of Fig. 1(a). The quasiperiodic region is
now dominated by a period 4 cycle. Again we can see tracers
of the oscillating stable and unstable manifolds. The line
C = 3.154 42 happens to slice through the bifurcation struc-
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ture illustrated in Fig. 1(f). Thus, one would expect a set of
11 elliptic islands buried somewhere in the chaotic region.
At the resolution of Fig. 8(d), only one orbit sampled this
bifurcation area, so the islands are not readily visible on that
plot. But they do exist; in fact their rotation number is
v = 2/11. If one looks at a small region surrounding one of
these 11 islands, one finds the structure shown in Fig. 8(e).
Here we see that the period 11 elliptic point is surrounded by
its own quasiperiodic region. A three-cycle surrounding this
elliptic point, representing a period 33 orbit, is seen to be in
the process of disappearing into the chaotic sea. One can also
easily see a seven-cycle (period 77 orbit) towards the edge of
the quasiperiodic zone. Thus, we see that the complicated
structure apparent in the bifurcation region in Fig. 1(f) is
due to the presence of elliptic islands other than just the 11
cycle alone.

Figure 8(f) shows the sos resulting from orbits sampled
along line E of Fig. 1(a). Here, C = 3.1536. The figure illus-
trates only the quasiperiodic region surrounding the one-
cycle and ignores most of the surrounding chaotic region.
We see evidence of the breakup and disappearance of a peri-
od 4 cycle, as well as the familiar progression of elliptic is-
land chains out through the quasiperiodic region.

The narrow neck traversed by line F of Fig. 1(a) has a
phase space structure as shown in Fig. 8(g). The quasiperi-
odic region has shrunk drastically. Its main feature now is an
unstable three-cycle. Here, the Jacobi constant is 3.152 95.

At the slightly higher energy corresponding to
C = 3.1525 and line G of Fig. 1(a), the quasiperiodic region
has expanded again as seen in Fig. 8(h). The tattered re-
mains of the three-cycle are apparent, and the outer quasi-

.905 .910

periodic region is dominated by a period 5 family of orbits.
At still higher energy (smaller C), the quasiperiodic region
shrinks again and finally is lost to the chaotic sea and disap-
pears. This is illustrated by the disappearance of the “island”
towards the bottom of Fig. 1(a).

What about the upper stability region of Fig. 1(a)? Figure
8(i) is a sos resulting from orbits sampled along the line H of
Fig. 1(a) (C=3.1666). We see that the phase space is again
dominated by a saddle loop structure. Qualitatively similar
evolution occurs with changing C as has just been discussed
for the stability island. The period 1 orbit family generates a
succession of n cycles as C is decreased. The quasiperiodic
region shrinks and disappears into chaos below roughly
3.1642.

Orbits that escape from the influence of .z, are, by sym-
metry, capture orbits. It seems from the previous analysis
that a large fraction of escape orbits are chaotic. Thus, it
must be that a large fraction of the orbits captured by ,», are
chaotic. To illustrate this, an orbit with initial conditions
close to those of the orbit S6 above (Fig. 5) was followed
after escape from ., . The surface of section in Fig. 9 results
from the ensuing motion around ., . This single trajectory
appears to fill a chaotic zone that surrounds stable quasiper-
iodic regions (the main quasiperiodic regions surround peri-
od 1 and period 3 cycles). This orbit is typical of the escape
(and therefore capture) orbits.

The implication for the solar system is that captured satel-
lites such as the irregular Jovian satellites originated in chao-
tic regions of motion about the Sun. Wisdom (1982, 1983)
has shown that the 3:1 mean motion resonance with Jupiter
has an associated chaotic band. This region is devoid of as-
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teroids and corresponds to one of the Kirkwood gaps. Thus
he showed that chaotic motion is a mechanism for clearing a
gap. Murray (1986) has done similarly for the 2:1 and 3:2
resonances. He finds a large chaotic zone at both resonances,
but mentions that in the 3:2 case the chaotic zone may be
overestimated. Indeed, Wisdom (1987) provides evidence
that the 3:2 resonance has a very limited chaotic zone. Muri-
son (1988, 1989b) has found that Jovian capture orbits have
their origin in heliocentric orbits near the 3:2 resonance (see
also Huang and Innanen 1983), which is currently occupied
by the Hilda asteroids. According to Wisdom, the Hildas do
not overlap the chaotic zone and appear to be stable. But the
capture orbits of Murison also do not, for the most part, lie in
the chaotic zone. Yet from the present work it seems that
capture orbits must, in general, have a chaotic origin. This
discrepancy is probably due to the fact that Wisdom has not
limited his calculations to the RTBP, as have Murison and
Murray.

V. CONCLUSIONS

The circular restricted three-body equations of motion
have been integrated for many tens of thousands of orbits,
using a fast and accurate code. The massless particle was, in
each case, started in motion around the smaller primary /»,,
and the amount of time before escape into motion around
2, was determined. Because of the symmetry of the initial
conditions, an escape from ., is the same as a capture by
5. The capture time has been presented in the form of a
gray-scale plot, with axes x, and C, and with gray scale pro-
portional to capture time. A surprising complexity results,

with the various loops and strands corresponding to families
of periodic orbits.

We have found that the structures of periodic orbit fam-
ilies in the C-x,, initial conditions plane are infinitely com-
plex, self-similar, and probably fractal. A sequence of
successive magnifications in the C—x, plane illustrates the
point. As in many other nonlinear dynamical systems, such
structure appears at the boundary of attracting regions. In
this case, the “attractors” consist of the tendency of the
massless particle to orbit either »», or »z,. The boundary
itself is infinitely complex. Thus, satellite capture is a bound-
ary effect, and the boundary is infinitely complex. We have
also shown illustrative cases of period-doubling and nonper-
iod-doubling bifurcations of periodic orbit families.

A surface of section analysis of selected regions of the C-
X, plane greatly illuminates the features of the C—x, struc-
tures. We reaffirm that the loops and strands are tracers of
periodic orbit families. The finite capture time areas corre-
spond to motion in the chaotic regions of the sos plots, while
the infinite capture time areas are regions where the motion
is trapped in the quasiperiodic islands surrounding elliptical
fixed points. The complex C-x, structure is a result of the
complex phase space structure as illustrated in the surfaces
of section. The changes in this complex, fractal-like struc-
ture with changing energy are explained by the evolution of
the various elliptic and hyperbolic » cycles and their asso-
ciated quasiperiodic and chaotic regions. Structures appear
and disappear as bifurcations give birth to new cycles and as
the chaotic sea swallows them up. The main stability feature,
or “island,” of the C-x, plane is the result of the birth, at the
top, of a saddle-loop structure and the corresponding quasi-
periodic region surrounding the stable fixed point. As the
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energy is increased, perturbations cause a transversal inter-
section of the stable and unstable invariant manifolds of the
hyperbolic-fixed point, leading to wild oscillations of the in-
variant manifolds, a homoclinic tangle, and chaotic dynam-
ics. Qualitatively similar phenomena are also occurring for
the upper stability region of Fig. 1(a).

One of the interesting features found on the surface of
section plots is due to orbits lying close to the stable and
unstable invariant manifolds. At the resolution of the fig-
ures, the first few oscillations of the manifolds are easily
seen.

With regard to gravitational satellite capture in the solar
system, an implication of this work is that an important
mechanism of capture is capture of chaotic orbits. Most, if
not all, escape ( = capture by symmetry) orbits appear to be
chaotic. Thus, we propose that captured satellites originated
from chaotic orbits around the Sun. This is currently being
explored further, for actual solar system mass ratios. [ Muri-
son (1988, 1989b) has shown that the mass ratio x4 has a
major effect on the structure of phase space. ]

Integration of the full differential equations of motion of a
dynamical system such as even the RTBP is very time con-

2359

suming. Surface of section explorations can be accomplished
much more quickly with iterative mappings. Wisdom (Wis-
dom 1982, 1983; Tittemore and Wisdom 1988, 1989) has
managed to construct iterative maps of the RTBP that are
valid near certain mean motion resonances in the solar sys-
tem. The capture time diagrams of this paper (Figs. 1), and
the phase space behavior evident in the sos plots, bear a strik-
ing resemblance to those corresponding to an iterative map
investigated by MacKay (1984). Vazquez etal. (1987) have
found similarities between the dynamics of the Cremona
iterative map and the RTBP. These examples provide hope
that an iterative map can perhaps someday be found that will
have qualitatively the same dynamics as the RTBP.
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PLATE 82
(a)
(b)
FIG. 1. (a) C—x, CRTB diagram for 1 = 0.01. Horizontal axis is initial position
X,, and vertical axis is Jacobi constant C. (b) Magnification of the lower box of
(a). (¢) Magnification of the boxed region of (b). (d) Magnification of the boxed
regionin (c). (e) Magnification of the lower box of (d). (f) Magnification of the
upper boxed region of (d). (g) Magnification of the upper box of (a). (h) Magni-
fication of the boxed region of (g).
Marc A. Murison (see page 2347)
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FIG. 1. (continued)
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(e)

F1G. 1. (continued)
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PLATE 85

(g}

FI1G. 1. (continued)
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